
Toward a Generic Spatial/Temporal Computation Model 

for Multimedia Presentations 

Timothy K. Shih and Anthony Y. Chang 
Multimedia Information NEtwork (MINE) Lab 

Department of Computer Science and Information Engineering 
Tamkang University 

Tamsui, Taiwan 
R.O.C. 

email: TSHIHQCS . TKU . EDU . TW 

Abstract 

Relations among temporal intervals can be used to assist the 
automatic generation o f  multimedia presentations. In this 
paper, we analyze the domains o f  interval temporal rela- 
tions. A set o f  algorithms is proposed to derive reasonable 
relations between intervals. Possible conflicts in the user 
specification are firstly detected and eliminated. Our mech- 
anism then constructs partial order relations among tem- 
poral intervals before the presentation time chart is built. 
The algorithm is extended for objects in an arbitrary n- 
dimensional space. Thus, presentation layouts in 2-D space, 
or Virtual Reality object representations in 3-D space can 
be constructed. We use our algorithms to design a reasoning 
system that generates the schedule and layout o f  multimedia 
presentations. 

Key words: Temporal Interval Relations, Multimedia 
Presentations, Spatial/Temporal Model 

1 Introduction 

Multimedia applications usually contains a number of 
multimedia resources to be presented sequentially or 
concurrently. Temporal interval relations among re- 
sources are provided by the users. These resources need 
to  be analyzed to ensure that there is no conflict among 
resources. Moreover, some of these resources, such as 
video clips or animations, occupy screen space. The 
spatial relations among resources need to  be computed 
and represented in the multimedia program. The work 
discussed in [l] only states temporal interval relations. 
We found that these relations can be generalized for 
spatial modeling. 

The contributions of our paper are to  give a com- 
plete discussion of different possible domains of inter- 
val relations based on graph representations. A set of 

algorithms are developed to derive multimedia presen- 
tation schedules and layouts from user specifications. 
Possible conflicts of user specifications are eliminated. 
Most importantly, we extend the algorithms to compute 
relations among objects in an arbitrary n-dimensional 
space. Section 2 discusses the relation domains and 
their properties. In section 3, algorithms are presented. 
The extension of these algorithms are given in section 4. 
Issues of realizing an automatic system is given in sec- 
tion 5. And finally, our conclusions are given in sec- 
tion 6. 

2 The Relation Domains 

According to the interval temporal relations introduced 
in [l], there exists thirteen binary relations between two 
temporal intervals. These relations were used in many 
spatial/temporal computation researches [2] of multi- 
media applications, including the one we proposed [3]. 
Allen’s work discussed in [I] includes a table showing 
the composition of interval temporal relations. Based 
on the table, we propose two algorithms in this paper, 
using the directed graph, for interval relation compc- 
sitions. These algorithms can be used to compute the 
binary relation between an arbitrary pair of intervals. 
In sections 4, we extend our algorithms for objects in 
an arbitrary n-dimensional space. 

The composition of interval temporal relations may 
result in an unknown derivation. For instance, if “X 
before Y” and “Y after Z” ,  there is no information that 
can be derived between X and Z. On the other hand, 
the composition may result in a multiple derivation. For 
example, if “X before Y” and “Y during Z’, the com- 
posed relation for X and Z could be “before”, “over- 
laps”, (‘meets”, “during” , or “starts”. These derived 
relations are called reasonable relations in our discus- 
sion. A reasonable set is a set of reasonable relations 

0-8186-7819497 $10.00 0 1997 IEEE 
228 



according to our definition. A reasonable set can not 
be empty, since there must exist at least one relation 
between any two intervals, assuming that they are in 
the same one dimensional space (i.e., the time line). 
However, a reasonable set may contain all 13 relations, 
which also denote that there is no information can be 
derived. 

In the multimedia presentation scheduling system we 
proposed [3], the temporal relations of multimedia ob- 
jects are provided by the user. In some cases, relation 
compositions may result in a conffict derivation due to  
the user specification. However, we did not consider 
this case in [3]. For example, if specifications “X be- 
fore Y” , “Y before Z” , and “X after Z” are declared by 
the user, there exists a conflict between X and Z. We 
can not tell whether it is “X after Z” or “X before Z”. 
The new algorithms we propose in this paper overcome 
our previous strategy. The new presentation schedul- 
ing system is able to issue an error message showing 
the conflict and suggest the user to  choose a correct 
relation. 

We analyze the domain of interval temporal relations 
and use an directed graph to  compute the relations of 
multimedia objects. In the computation, we consider 
all possibilities: the unknown derivations, the multiple 
derivations, and the conflict derivations. Some terms 
used in the graph are defined as the following: 

Definition: An user edge denotes a relation between 
a pair of objects defined by the user. The relation may 
be reasonable or non-reasonable. 

Definition: A derived edge holds a non-empty set 
of reasonable relations derived by our algorithm. The 
relation of the two objects connected by the derived 

For each pair of objects in the time line, there exists 
a set of possible binary relations held between the pair 
of objects. For an arbitrary number of objects (denoted 
by nodes), some of the relations (denoted by edges) are 
specified by the user while others are derived. If there 
exists a cycle in the directed relation graph, a conflict 
derivation may occur. However, if there exists no cy- 
cle, there is no conflict. There may exist an unknown 
derivation which represents that there is no enough in- 
formation to derive a relation between a pair of objects. 
Based on the above considerations, we suggest that the 
computation domain reveals four types, as discussed 
below. 

The complete relation domain is a complete graph 
which contains possible conflicts. We want to  find a rea- 
sonable relation domain containing no conflict deriva- 
tion. Note that, in these two domains (i.e., the complete 
and the reasonable), both user edges and derived edges 
exist. If there is a conflict among a set of user edges, 
one of the user edge must be removed from the cycle, 
or the relation of that user edge must be re-assigned. If 

edge can be any reasonable relation in the set. 

there is no conflict, the two domains are equal. 
The reduced relation domain contains relations speci- 

fied by the user only. It is possible that the user issues a 
conflict situation. To avoid the occurrence of conflicts, 
we place a restriction on the user’s interaction. Instead 
of allowing the user to  add an arbitrary relation to the 
relation graph, we only allow the user to  add objects to  
a restricted relation domain, which is a tree and a sub- 
domain of the reduced relation domain. That is, when 
the user is about to add a new edge, the user either adds 
a new node connected to  an existing node via an user 
edge, or joins two sub-trees via the user edge. No cycle 
is created in the restricted relation domain. Thus, the 
conflict situation does not exist. When deleting an user 
edge, the user has to maintain the connectivity of the 
tree. If all nodes are connected, the user specification 
is complete. Otherwise, the presentation system should 
alert the user to complete the specification. The above 
domains can be summarized as the following: 

The complete relation domain (a complete graph): 
contains user edges and derived edges, with possible 
cycles and possible conflicts. 
The reasonable relation domain (a graph): con- 
tains user edges and derived edges, with possible cycles 
but no conflict. 
The reduced relation domain (a graph): contains 
only user edges, with possible cycles and possible con- 
flicts. 
The restricted relation domain (a tree): contains 
only user edges, without cycle. 

The four domains are used in the analysis and com- 
putation of object relations. In the next section, we 
propose two algorithms computing the reasonable rela- 
tion domain. 

3 Generating Presentation 

This section discusses a serial of algorithms to gener- 
ate multimedia presentations from user specifications. 
Firstly, we discuss two algorithms for computing the 
reasonable relation domain, which contains no conflict 
and thus can be used for generating schedule or lay- 
out of a presentation. Next, a representation of partial 
order relation is used to  denote the topological order 
of objects. An algorithm takes as input a reasonable 
relation domain and generates these partial order sets 
(POSets) is presented. Another algorithm generates 
schedule and layout from the POSets is also given. 

3.1 Computing Reasonable Relations 

The first algorithm computes the reasonable relation 
domain from the reduced relation domain. User edge 

229 



.I 

sentation system, depending on the user's specification, 

conflicts are eliminated and derived edges and cycles 
v 

without conflict are added. The second increases user 
edges one by one in a restricted domain, aild the cor- 
responding derived edges are added to the reasonable 
relation domain. The resulting domain may have cycles 
due to the insertion of derived edges. But no conflict 
occurs. 

The DurDose of the first alrrorithm is to add de- 
. I  - 

rived edges to the reduced relation domain. If there 
is a conflict cycle in the original reduced relation dc- 
main, the algorithm eliminates that conflict first by 
alerting the user to select a reasonable relation. Thus, 
the resulting reasonable relation domain is a complete 
graph, which is equal to  the complete relation domain. 
This conflict elimination is achieved by invoking the 
ElimznateConfEicts algorithm. Suppose G is a graph of 
the reduced relation domain, and GV and GE are the 
vertex set and edge set of G, respectively. Initially the 
reasonable relation domain is set to the reduced relation 
domain. The algorithm computes derived edges based 
on user edges. The reason of using the user edges is that 
these edges contain the minimal arid sufficient infornia- 
tion of what the user wants. If the algorithm computes 
derived edges from other derived edges. eventually, the 
algorithm has to compute the set intersection of all pos- 
sible derivations for the reasonable set of the new de- 
rived edge. The algorithm starts from taking each path 
of user edges of length 2, and computes a derived edge 
from that path. The insertion of edge e = ( a ,  b )  results 
a cycle, but no conflict. The reasonable set of edge e 
(i.e., e.rs) is computed from two edges, ( U ,  nk-l)  and 
( n k - 1 ,  b ) ,  which are user edges or derived edges. Since 
we increase the path length, p l ,  of the path of user edges 
one by one. the derived edge ( a ,  nk- (or user edge; if 
p l  = 2) must have been computed in a previous itera- 
tion. The algorithm repeats until all edges are added 
to the complete graph Kn , which contains n * ( n  - 1)/2 
edges. The first algorithm, CompuieRDl, is given be- 
low: 

Algorithm : ComputeRDl  
Input : G = ( G V ,  G E )  

Preconditions : true 
Postconditions : GV = Kn V A G E  5 Kn E 
Steps : 
1 : G = EliminoteConflicts( G )  

3 : repeat until I Kn E I = I Zin V I * (I Zi', V I -1) / 2 

Output : Ii'n = ( K n  V ,  K n  E )  

2 : K n  = G ~ p l = 2  

3.1 : foreach  e = ( a , b ) A e 4 K n E A a E K n V A  
b E Kn Vsuch that  there is a path of user 
edges from a to  b ,  with path length = p l  

3.2 : suppose ( (n l ,  nz) ,  (n2, n3), ... ,( nk--l, nk)) 

3.3 : se t  e.rs = RelComp((a ,  nt.l).rs,(nk-l, b ) . r s )  
3 . 4 : I i n E = K n E U {  e }  
3.5 : p l  = p l +  1 

is a path with a = nl A b = nk A k = p l +  1 

In ComputeRD1, we use the conflict elimination al- 
gorithm. A conflict occurs only if there is a cycle. 
For each cycle in the reduced relation domain, the 
ElimznateConflicts algorithm finds a derived edge be- 
tween any two consecutive edges, namely, ( n ,  , n,+l) 
and (n t+lr  n,+2). The algorithm then checks if the last 
user edge making the cycle represents a relation (i.e., 
(nk, nk-l) .r)  belongs to the reasonable set computed 
for the user edge (i.e., m). If not so, the algorithm asks 
the user to choose an arbitrary relation r' belongs to 
the reasonable set and use the relation to replace the 
original one. 

Algorithm : EliminateConjlicts 
I n p u t :  G = ( G V ,  G E )  
Output : G' = (G' V ,  G'E) 
Preconditions : G contains only user edges A G' = G 
Postconditions : G' = G ,  but the reasonable sets of 

Steps : 
1 : for each P = ( (nl ,  n2),(n2, ns), ..., (nk-l, nk)) in G', 

edges in G' may be changed 

with nl = nk A k > 3 
1.1:foreach i , l < i L k - 2  

1.1.1 : set (nz, n,+2).rs = 
RelComp(( n,, nz+l ) .rs,  (n,+~, n ~ + 2 ) . ~ 3 )  

1.2 : rs = RelComp((nk,  nk-2).rs1 (nk-2, nk-l) .rs)  
1.3 : i f  (nk, nk- l ) . r  rs then 

1.3.1 : ask user to choose an r' E rs 
1.3.2 : set (nk,  nk-l).r = r' 

In function RelComp, the reasonable set computed 
must be the union of all possible combinations of the 
pair of relations obtained from the two input reasonable 
sets, namely, m 1  and 732.  The function uses a table 
lookup function to obtain a set of reasonable relations. 
The TubleLookUp function (definition omitted) uses the 
relation composition table discussed in [l], if the algo- 
rithm is to  compute relations of objects in a 1-D space. 
We have another table for objects in a 2-D space dis- 
cussed in section 4. However, it is the same algorithm 
to compute the reasonable relation domain. Only the 
amount and type of relations are changed (i.e., changes 
from 1-D relations to 2-D relations). The following is 
the function computes a reasonable set: 

Algorithm : RelComp 
Input : r s ~ ,  rs2 
Output : rs 
Precondtttons : true 
Postconditions : true 
Steps : 
1 : r s = U  V rl E rsl ,V rz E rs2 e( rl , rz) E rs1 x rs2 

TubleLookUp(r-1, r2) 

In the actual implementation of a multimedia pre- 

230 



directions of user edges are easily decided and repre- 
sented in the implementation. 

The first algorithm assumes that a set of relations is 
provided by the user. However, in an interactive sys- 
tem, the user may incrementally adds user edges. The 
set of relations is unknown before the completion of the 
multimedia specification. In the next algorithm, we al- 
low the user edges to  be added to  the graph one by 
one. Thus, our algorithm is more realistic for a system 
of interactive multimedia presentation designs. 

The restricted relation domain is a tree. The rea- 
son for using a tree is to  avoid cycles which may in- 
troduce conflicts. A multimedia presentation contains 
a number of objects. When a new object is added to  
the presentation, an user edge and a node representing 
the new object is added. A number of derived edges 
are also inserted. Adding a new node to  the complete 
graph Kn requires adding n new edges, where n is the 
number of nodes, to  complete Kn+l. Since a complete 
graph is strongly connected, there exists an edge be- 
tween each pair of nodes. When a new user edge is 
added, we can compute other derived edges from check- 
ing the composed relations between an existing edge 
and this new user edge. Algorithm AddUL adds an 
user edge 1 = ( a ,  b )  to  a complete graph h‘n: 

Algorithm : AddUL 
Input : I  = ( a ,  b ) ,  Kn = (Kn V ,  Kn E )  
Output : Kn+i = (Kn+i V ,  Kn+i E )  
Preconditions : I  4 Kn E A a E Kn V A b 6 Iin V 
Postconditions:I Kn+1 v I = I Kn V I + 1 A 

Steps : 

2 : for each e = ( c ,  b )  A c # a A c E Iin V 

I Kn+l E I = I Kn E I + n 
1 : Kn+l E = K n  E U { I  } 

2.1 : = n v d E K n  “ , ( c , d ) E ~ n E , ( d , b ) E K n E  
(RelComp( ( c ,  d ) .  rs,  ( d ,  b ) .  r s ) )  

2.2 : Kn+l E = Kn+1 E U { e } 
3 : Kn+l V = Kn V U { b } 

The following is the second algorithm which adds all 
edges in the restricted relation domain T to  the com- 
plete graph Kn: 

Algorithm : ComputeRD2 
Input : T = ( T V ,  T E )  

Preconditions : T does not contain any cycle 
Postconditions: TV = Kn V A TE c Kn E 
Steps : 
I : K n V = {  a } A a E T V A l i n E = O  
2 :for each e E TE A e 6 I l n E  

Output : Kn = (Kn V ,  Kn E )  

2.1 : Kn = AddUL(e ,  I l n )  

3.2 Computing the Partial Order Sets 

After the reasonable relation domain is computed. Con- 
flicts in a user specification, if any, are eliminated. The 
next step is to use these information to  assist a mul- 
timedia presentation system to generate presentation 
schedule and layout. There are two further steps for 
tlhe automation. Firstly, the order of presentation ob- 
jects, whether as a time line or as a two dimensional 
layout, must be decided. Secondly, the schedule and 
layout must be generated. The second step is dis- 
cussed in section 3.3. The first is achieved via function 
ComputePOSet discussed in this section. 

For each time interval, represented as a 1-D object, 
there is a starting point and an ending point. Assum- 
ing that there is no conflict, it would be nice to use a 
partial order relation to  formulate a set of time inter- 
vals. However, intervals may overlap or embrace one 
another. An interval X with starting point before the 
one of interval Y may have its ending point after the 
ending point of Y. To represent the order, we use two 
partial order sets (POSets), one for the starting points 
and another for the ending points. For each pair of ob- 
jects, after their relation is given by the user, the order 
of points are decided, as illustrated in table 1. In or- 
der to state the relations between these two POSets, 
a duration label for each object is used. These labels 
connect starting and ending points. When the duration 
or sizes of each multimedia object is obtained, duration 
labels are attached with a number. 

According to the temporal interval relations given in 
[l], the order of starting and ending points are decided. 
For example, if “X equals Y”, the starting and ending 
points of X and Y are equal. If “X during Y”, Y’s start- 
ing point is before the one of X. But their ending points 
are in an opposite direction. The initiation connections 
and the termination connections given in table 1 pic- 
ture the order of points for seven relations. Similarly, 
those for the six inverse relations can be constructed. 

Function ComputePOSet takes as input a reasonable 
relation domain and generates two POSets. An arbi- 
trary node of h’,, V is chosen. The duration label of this 
node is added. Next, the algorithm performs a depth 
first search (or breadth first search) on the reasonable 
relation domain via user edges. Note that, for each user 
edge ( X ,  Y ) ,  one can always find an inverse user edge 
( Y ,  X) denoting the inverse relation of that user edge. 
Thus, graph traversal is allowed in each direction of an 
user edge. Nodes and edges in the initiation POSet and 
termination POSet are added one by one. And dura- 
tion labels are decided. Since there is no conflict cycle 
and the graph is connected, the two POSets are con- 
structed after n iterations, where n is the number of 
objects. However, the number of nodes in the POSets 
are not necessary equal to n, as initiation or termina- 
tion connections may join nodes. When a set of object 
relations is given, the initiation POSet and termination 
POSet are generated by the following algorithm: 

231 



Algorathm : ComputePOSet 
I n p u t  : Kn = ( lin V, Kn E )  
Output : InztPOSet = ( I V ,  I E ) ,  

Precondztzons : Kn is a reasonable relation domain 
Postcondztzons : true 
Steps : 
1 : choose an arbitrary node v E I(, V 

l . I : l e t Z V = {  v } A T V = {  u } A  

Z E = O A T E = O  
1.2 : add duration label of v 

2 : for each user edge ue E ICn E ,  perform DFS on El, 
2.1 : add init connection of ue t o  InttPOSet 
2.2 : add term connection of ue t o  TermPOSet 
2.3 : add duration label of the new node from ue 

TermPOSet = ( T V ,  T E )  

The temporal order of objects is represented in two 
POSets, one for the starting points and another for the 
ending points. Using a similar concept, the spatial or- 
der of 2-D objects is captured in four POSets, two for 
the starting and ending boundaries in the X coordinate 
and the other two for the Y coordinate. In general, for 
an arbitrary n-dimensional space, we need n pairs of 
POSets. 

Table 1: The orders of starting and ending 
points 

User Edge Initiation Termination 
Relations Connections Connections 
X equal Y X = Y  X = Y  
X before Y X ; Y  X , Y  
X meets Y X ; Y  X i Y  
X overlaps Y X ; Y X ; Y  
X during Y X i Y  X i Y  
X star ts  Y X = Y  X ; Y  
X finishes Y X i Y  X = Y  

3.3 Generating Layout 

After the initiation POSet and termination POSet are 
constructed, the next step is to construct the presen- 
tation schedule or layout. We present an algorithm for 
scheduling first. And the algorithm is then extended 
for layout construction. 

Assuming X and Y are temporal intervals, a number 
of properties are defined below: 

X.s: denotes the starting time of interval X .  

X .e:  denotes the ending time of interval X .  

S . d :  denotes the duration of interval X. 

(X. Y).t: is the time difference between the starting 
time of interval X and the starting time of interval Y. 

Similar properties for interval Y are defined. The 
temporal interval relations given in [l] provide the or- 
ders of starting and ending points of two intervals. How- 
ever, to schedule a presentation, precise timing is re- 
quired. Thus we add parameters to  these temporal re- 
lations. We define parameters for three relations (and 
their inverse relations): 

before()(, Y, n): X is before Y, n is the time difference 
between starting points of X and Y. 

overlaps(X, Y, n): X overlaps Y, n is the time difference 
between starting points of X and Y. 

during(X, Y, n): X is during Y, n is the time difference 
between starting points of X and Y. 

However, other relations do not require a parame- 
ter. For example, if “X starts Y”, we can always find 
the durations of objects X and Y from a multimedia 
resource database. Thus, we know the difference be- 
tween the two ending points of X and Y. After pa- 
rameters are added, assuming that X . s  is known and 
X . d  and Y.d are obtained from the multimedia re- 
source database, we can always derive Y.s .  Also, we 
know that X . e  = X . s + X . d ,  Y.e = Y . s +  Y .d ,  and 
( X ,  Y ) . t  = Y.s  - X.S .  The time difference ( X ,  Y) . t  is 
used in the ComputeRT algorithm. The following table 
summarize these computations of relations: 

Table 2: Parameterized Temporal Interval 
Relations 

Parameterized Relations Starting Time 

before()(, Y, n) Y.s = X.s + n 
meets()(, Y) Y.s = X.s + X.d 
overlaps(X, Y, n) Y.s = X.s + n 
during()(, Y, n) Y.s = X.s - n 

finishes(>(. Y) Y.s = X.s - (Y.d - X.d) 

equal(X, Y )  Y.s = x.s 

starts(X, Y) Y.s = x.s 

Next, from the initiation POSet, we can compute a 
relative time table (RT) for  the starting points of tem- 
poral intervals. Algorithm ComputeRT takes as input 
an initiation POSet, and computes the relative time ta- 
ble, which is denoted by a function mapping from nodes 
to integers or an undefined symbol (which means that 
the relative time is not yet computed): 

232 



Algorithm : ComputeRT 
Input : ZnitPOSet = ( I V ,  I E )  
Output : RT = ZV + Integer U { Undefined } 
Preconditions : V v E IV RT( U )  = Undefined 
Postconditions : V v E ZV RT( U )  E Integer A 

V = ZV A E = IE 
Steps : 
1:let  V E I V A R T ( V ) = O A  v = {  v } A E = @  
2 : for each e = (a ,  b)  E ZE A e E A (a  E V v b E V )  

2.1 : i f  a E V then 
2.1.1 : i f  b 6 V then 

R T ( b )  = R T ( a )  + e.t A 
v =  V U {  b } A E = E U {  e }  

2.1.2 :else if RT(b)  # R T ( a )  + e . t  then Error 

2.2.1 :if a 6 V then 
2.2 : else if b E V then 

R T ( a )  = RT(b)  - e . t  A 
v =  V U {  a } A E = E U {  e }  

2.2.2 : else if R T ( a )  # RT(b)  - e.t  then Error 
3 : choose t E Integer such that V U  E ZV 0 t 5 RT(u)  
4 : for each U E IV ,  let R T ( v )  = RT(w) - t 

Initially, all relative time of nodes are undefined. The 
algorithm chooses an arbitrary node from the POSet 
and set the relative time of that node to zero. V and 
E are node set and edge set keep track of nodes and 
edges visited. Each time the algorithm finds a new 
edge, e = ( a ,  b ) ,  connected to the part of graph tra- 
versed. Depending on whether the new edge is con- 
nected from the graph (i.e., a E V )  or connected to  the 
graph (i.e., b E V ) ,  the algorithm computes the relative 
time of the new node added to the graph. However, if 
the node to be added is already in the graph, the al- 
gorithm checks for inconsistency and reports a possible 
error message. After all edges in IE and nodes in ZV 
are added to E and V ,  respectively, the algorithm finds 
the smallest relative time of all nodes, and adjusts the 
relative time table accordingly. The object with a zero 
starting relative time is the one who should start the 
multimedia presentation. The schedule of ending points 
can be computed by the same algorithm by using the 
termination POSet as input. 

Using a similar concept, we can decide the spatial or- 
der of 2-D objects. The X and the Y coordinates of ob- 
ject starting positions are computed separately. Thus 
the layout of a multimedia presentation is generated. 
However, the layout may change according to  time. In 
section 5.1. we will discuss a technique to  bridge tem- 
poral and spatial information of a presentation. 

4 Extending the Algorithms 
Allen’s work [l] discusses relations for l-D objects 
(e.i., time intervals). In this section, we introduce a 
mechanism to extend the relations of objects to an n- 
dimensional space. Relations of 2-D objects can be used 

in screen layout designs. Relations of 3-D objects can 
be used in 3-D graphics, such as Virtual Reality ap- 
plications. A cube in 3-D space can be projected onto 
a 2-D plane. Similarly, a square is projected to a line 
segment. If we look at two objects in the n-dimensional 
space, we can project the positional relation between 
these two objects from n directions to  n l-D space. 
Thus, an n-dimensional relation can be formularized by 
a conjunction of n l-D interval relations. 

Let R1 denote a l -D temporal interval relation dis- 
cussed in section 2. The relation composition table 
discussed in [l] is a function maps from the Cartesian 
product of two Rls  to  a set of R l s  (denoted by P RI). 
Assuming that t 1  is the mapping function interpreting 
Allen’s table, we can compute t 2 ,  the relation compo- 
sition table of 2-D objects, and t 3 ,  the one for 3-D ob- 
jects, from t l .  There are 13 relations for l -D objects. 
A conjunction of two l -D relations, which denotes a 2- 
D relation, has 13’ variations. Similarly, there are 133 
3-D relations. Fortunately, 4-D relations are not quite 
applicable and the memory space required for 2-D and 
3-D relation tables is manageable by nowaday comput- 
ers. 

Following the notations used in [l], “<” denotes the 
“before” relation, “>” is the “after” relation, and so 
on. The set of l-D relations, P R1, is due to [l]. Note 
that, “e” denotes the “equal” relation. Since a 2-D 
relation is a conjunction of two 1-D relations, we use the 
notation, q x r2, to  denote a 2-D relation, where TI and 
r2 are two l -D relations. Thus, t2 is a mapping from 
the Cartesian product of two R l  x Rls  to P R1 x R1. 
In P R1 x R1, there are 169 2-D relations. Similarly, 
t 3  is represented. The following are signatures of these 
relation tables: 

t’ = R1 x R1 ’-* P R1 
P R1 = { < , > , d , d i , o , o i , m ,  m i , s , s i , f , f i , e  } 
t 2  = R1 x R1 x R1 x R1 + P R1 x R1 
P R l x R l = {  < x <,< x >,< x d , <  x d i  ,... } 
t 3  = R 1  x R1 x R1 x R1 x R1 x R1 -+ PR1 x R1 x RI 
P R l x R l x R l = {  < x < x <,< x < x >, ...} 

Tables t 2  and i3 are computed according to the fol- 
lowing formulae. Note that, each element in table t 2  
contains a set of 2-D relations, which are computed from 
the production of two elements of table t l :  

Vi1 x j l , i z x j 2 E E P l x R l  
t2( i l  x j ~ ,  iz x b) = 

Vi1  x j l  x k1, iz  x j z  x kz E P R1 x R1 x R1 
t3 ( i l  x j l  x k l , &  x i  x kz) = 

t ’ ( i 1 , i z )  x t ’ ( j 1 , ~ ; r )  

n t ’ ( i 1 ,  i z )  x t ’ ( j 1 , h )  x t ’ (k1 ,  k2) 

where n A x B = { a x b I V a E A ,  b E B } 
n A  x B x C =  { a x  b x c l V a  E A , b E  B , c  E C } 

Table generated by the above formulae are stored in 
memory to reduce run-time computation load. These 

233 



tables are used in the algorithm discussed in section 3.1 
(i.e., the Tab leLookUp  algorithm), depending on which 
dimension of objects the algorithm is computing. 

5 The Automation 

We use our algorithms to  design a system for multime- 
dia presentation designs. One dimensional relations are 
used for scheduling and two dimensional relations are 
for layout generation. We try to provide a set of rela- 
tion ICONs and a graphical user interface for the user 
to click, drag and drop multimedia resource relations. 
Thus, the necessary information of generating schedule 
and layout is declared. When a user is about to  change 
the relation between two resources, the user does not 
need to  worry about relations of other objects. This 
is the most important advantage of using our system. 
However, considering the amount of relations, it is quite 
difficult for us to  design and for the user to use 13 1-D 
relation ICONs and 169 2-D relation €CONS. Therefore, 
synthesizing relations is a need. Assuming X . d  denotes 
the duration of interval X I  and Y . d  is the one for Y ,  
and according to  the parameterized relations discussed 
in section 3.3, we combine the following five relations 
into the p a r a l l e l ( X ,  Y ,  n )  relation: 

Table 3: Combining Parallel Relations 

Parameterized Relations Conditions 
epuaZ(X, Y )  n = 0 A Y . d  = X . d  
d u r i n g ( X ,  Y ,  n )  n > O A  Y . d > n + X . d  
s t a r t s ( X ,  Y )  n = 0 A Y . d  > X . d  
f in i shes (X ,  Y )  n > O A  Y . d = n + X . d  
overlaps-’(X, Y ,  n) n > 0 A Y . d  < n + X . d  

For example, given the relation p u r u l l e l ( X ,  Y ,  n ) ,  
if n > 0 and Y . d  > n + X . d ,  then the relation 
dur ing( ,Y ,  Y ,  n )  is used by the system for scheduling. 
Note that p a r a l l e l ( X ,  Y ,  n )  is specified by the user via 
an ICON. But X . d  and Y . d  are retrieved from the re- 
source database. Similarly, we combines two relations 
into the sequent ia l (  X, Y ,  n )  relation: 

Table 4: Combining Sequential Relations 

Parameterized Relations Conditions 
be jore (X ,  Y, n)  n > O  
meets(X. Y )  n = O  

We design two ICONs for the parallel  and the 
sequent ia l  temporal relations. The boxes denoted by 
“X” and “Y” are to keep resource ICONs which repre- 
sent multimedia resources selected by the user via our 
resource browser. The small boxes denoted by “n” are 
filled with integers by the user for the timing parameter 
of those two relations. Since the two temporal relations 

(and their inverse relations) cover all 13 relations intro- 
duced in [l], using our two ICONs and the graphical 
user interface enables the user to specify any temporal 
relations between two multimedia resources. 

To design spatial ICONs is a little complicate. Based 
on the two temporal ICONs, we derive four basic spatial 
ICONs. Note that, the concepts of parallel and sequen- 
tial relations are used in the spatial ICONs for control- 
ing object overlaping. Two rectangles can be parallel to 
each other in the X or in the Y coordinate. Only if both 
coordinates overlap, the two rectangles overlap physi- 
cally, as shown in the parallel-parallel spatial ICON. 
The other three basic spatial ICONs contain rectangles 
either overlap in zero or one coordinate. Thus, those 
rectangles do not overlap with each other physically. 

For the two temporal ICONs, inverse relations can 
be specified by swapping the two multimedia resources. 
However, in the case of spatial ICONs, inverse relations 
occur either in the X or in the Y coordinate (or both). 
Thus, the swapping of resources in X and Y coordinates 
are dependent. Therefore, for each basic spatial ICON, 
there are four possible cases. Considering the X box 
(i.e., resource X) fixed in coordinate, the Y box (i.e., 
resource Y) can be on the north-west, the north-east, 
the south-west, or the south-east of the X box. How- 
ever, the north-west case and the south-east case are 
inverse relations, as well as the north-ease case and the 
south-west case. Thus, only four spatial ICON varia- 
tions are used. Similar t o  specifying a timing parameter 
of a temporal relation, spatial ICONs use box “m” and 
“n” for spacing information in the X and the Y coor- 
dinates. Two dimensional relations are extended from 
those of 1-D’s. Since the four basic spatial ICONs are 
extended from the parallel and the sequential tempo- 
ral ICONs, and all inverse relations can be derived, we 
found that the 8 spatial ICONs covers all cases of spa- 
tial relations. 

5.1 Linking the Temporal and the Spa- 
tial Relations 

A presentation schedule is a collection of temporal inter- 
vals. Each interval has a starting point and an ending 
point. These points change the state of a presenta- 
tion. A state change point in a presentation, in our 
definition, is a time point which contains at lease one 
starting or ending point of temporal intervals, except 
the ending point(s) of the last interval(s). Since multi- 
media presentations are dynamic, the definition of pre- 
sentation layout is with respect to a time point. It 
is the state change points that we consider for these 
time points. The layout of presentation with respect 
to a state change point is defined to  be the collection 
of multimedia resource locations on the screen, starting 
from the state change point and ending at  the next state 
change point (exclusive), or the end of the presentation. 

The relative time table discussed in section 3.3 con- 

234 

I 



tains the starting point of intervals. The ending points 
are easily computed by using the relative time table and 
the duration labels. Therefore, a set of state change 
points is computed. For each point in the set, we 
maintain links to the objects in the spatial relation 
POSets. Thus, the layout design with respect to each 
state change point is constructed and stored. 

computing. 

Acknowledgement 

I would like to thank all members of the MINE Lab, 
especially Mr. F. Y. Jeng, Mr. Steven K. Lo, Mr. 
Szu-Jan Fu, and Mr. Julian B. Chang for their imple- 
mentation of the presentation system. 

6 Conclusions 
References 

In this paper, we analyze temporal interval relations 
and propose four domains for relation composition. We 
provide a set of algorithms for the automatic generation 
of multimedia presentation from temporal and spatial 
relations among multimedia resources. Possible con- 
flicts of relations are eliminated. We then extend the 
algorithms to compute relations of objects in an arbi- 
trary n-dimensional space. The algorithms are used in 
a system that uses an ICON programming technique 
for multimedia presentation designs. 

The algorithms proposed in this paper can be used 
in other computer applications, for instance, a project 
management system. A project contains a number of 
tasks. Two tasks may be performed either concurrently 
or sequentially. They may start or end at  the same 
time. Or, the first task may be performed after eighty 
percents of the second is complete. In such a manage- 
ment system utilizes our algorithms, if the user specifies 
the temporal relations of tasks, the project schedule can 
be generated automatically. 

The system proposed in this paper takes a complete 
different approach from a system of similar purpose that 
we have developed [3]. Our previous work uses tem- 
poral interval relations and artificial intelligence tech- 
niques to assist the user for multimedia presentation 
designs. The inference rules are intuitive and not quite 
feasible in some situations. Also, spatial relations were 
not discussed. In this paper, procedural algorithms use 
a graph representation provide a total solution of the 
automation. And the spatial composition of multime- 
dia resources is newly proposed. However, in this new 
presentation system, we have not yet take as considera- 
tions the hardware limitations. Physically, it is difficult 
to present more than two sound wave resources simul- 
taneously for most sound devices of nowaday personal 
computers. We will implement another checking mech- 
anism to alert the user for this situation. Also, in [3], we 
discussed a number of rules to cut or extend multimedia 
resources in order to make a better presentation. We 
are now incorporating these rules in our new system. 

The main contributions of this paper are in its the- 
oretical analysis of interval relation compositions and 
a systematic approach toward automation. We hope 
that, with our analysis and algorithms, the knowledge 
underlying temporal interval relations can be used in 
many computer applications, especially in multimedia 

James F. Allen “Maintaining Knowledge about 
Temporal Intervals,’’ Communications of the 
ACM, Vol. 26, No. 11, 1983. 

Thomas D. C. Little and Arif Ghafoor “Interval- 
Based Conceptual Models for Time-Dependent 
Multimedia Data,” IEEE transactions on knowl- 
edge and data engineering, Vol. 5, No. 4, 1993, pp 

Timothy K. Shih, Steven K. C. Lo, Szu-Jan Fu, 
and Julian B. Chang, “Using Interval Tempo- 
ral Logic and Inference Rules for the Automatic 
Generation of Multimedia Presentations,” in Pro- 
ceedings of the IEEE International Conference on 
Multimedia Computing and Systems, Hiroshima, 
Japan, June 17 - 23, 1996, pp. 425 - 428. 

Timothy K. Shih, Chin-Hwa Kuo, Huan-Chao 
Keh, Chao T. Fang-Tsou, and Kuan-Shen An, 
“An Object-Oriented Database for Intelligent Mul- 
timedia Presentations,” in proceedings of the 1996 
IEEE International Conference on Systems, Man 
and Cybernetics, Beijing, China, October 14 - 17, 
1996. 

Michael Vazirgiannis, Yannis Theodoridis, and 
Timos Sellis “Spatio - Temporal Composition in 
Multimedia Applications,” in proceedings of the 
International Workshop on Multimedia Software 
Development, March 25 - 26, Berlin, Germany, 
1996, pp 120 - 127. 

Thomas Wahl, et. al., “TIEMPO: Temporal Mod- 
eling and Authoring of Interactive Multimedia” in 
proceedings of the international conference on mul- 
timedia computing and systems, Washington DC, 
U.S.A., May 15-18, 1995, pp 274-277. 

551-563. 

235 


